
ECE 598: Representation Learning: Algorithms and Models Fall 2017

Lecture 1: Tensor Methods in Machine Learning

Lecturer: Pramod Viswanathan Scribe: Bharath V. Raghavan, Oct. 3, 2017

1.1 Introduction

Tensors are higher-order generalizations of matrices are often used to represent multi-linear relation-
ships or data that involves higher order correlation. They are useful tools in parameter estimation
in learning problems. A tensor can be visualized as shown in Fig. 1.1 Tensor decomposition have

Figure 1.1: Visualization of Tensors of different orders.

gained popularity in parameter estimation for a variety of problems. In this lecture, the focus is
on how they may be used in estimating the parameters of Gaussian Mixture Models and Hidden
Markov Models. In a Gaussian mixture model, there are k unknown n-dimensional multivariate
Gaussian distributions. Samples are generated by first picking one of the k Gaussians, then drawing
a sample from that Gaussian distribution. Given samples from the mixture distribution, our goal is
to estimate the means and covariance matrices of these underlying Gaussian distributions [GHK15].
That is, given xxx = (x1, x2, ..., xN )

FX(xxx) =
r∑

l=1

wlN (xxxl;µµµl,ΣΣΣl) (1.1)

The goal is to learn the parameters of this mixture model. Alternatively, can a tensor TTT which
represents the data originating from a statistical model, be expressed as

TTT =
r∑

l=1

uuul ⊗ vvvl ⊗wwwl (1.2)

where uuul, vvvl, and wwwl are the factors of the tensor representing the parameters of the model.
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1.1.1 Comparison to Matrix Decomposition

For a matrix MMM , Singular Value Decomposition allows it to be expressed as

MMM =

r∑
l=1

λluuulvvv
T
l (1.3)

Tensor decomposition is a generalization of Matrix decomposition. However, if it exists it is unique.
Finding a decomposition for a tensor is a computationally difficult task. Computing the rank, the
best rank one approximation and the spectral norm are all NP-hard [HL13]. Also many of the
familiar properties of matrices do not generalize to tensors. For example, subtracting the best rank
one approximation to a tensor can actually increase its rank and there are rank three tensors that
can be approximated arbitrarily well by a sequence of rank two tensors [BCMV14].

1.2 Motivating Examples

To motivate the need for Tensor Methods we first study Spearman’s Hypothesis and representing
the transition matrix Hidden Markov Models.

1.2.1 Spearman’s Hypothesis

In 1904, psychologist Charles Spearman tried to understand whether human intelligence is a
composite of different types of measureable intelligence. A highly simplified version of his method,
hypothesizes that there are exactly two kinds of intelligence: quantitative and verbal. Spearmans
method consists of making his subjects take several different kinds of tests. For instance, Classics,
Math, Music, etc. The subjects scores can be represented by a matrix MMM , which has one row per
student, and one column per test. Table 1.1 illustrates the data,

Classics Math Music ...
Alice 19 26 17 ...
Bob 8 17 9 ...

Charlie 7 12 7 ...
...

...
...

...

Table 1.1: Spearman’s Hypothesis

One way to represent the data is with xxxq, yyyq, xxxv, and yyyv as the quantitative and verbal intelligence
of the students (xxx) and the required intelligence for each subject (yyy). Then, the data is

MMM = xxxqyyy
T
q + xxxvyyy

T
v (1.4)

It can be recognized that this matrix model is not unique. For instance, two plausible representations
are [

xxxq xxxv
]

=

4 3
3 1
2 1
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and [
yyyq
yyyv

]
=

[
1 5 2
5 2 3

]
Or, [

xxxq xxxv
]

=

1 3
2 1
1 1


and [

yyyq
yyyv

]
=

[
1 5 2
6 7 1

]
Hence, the low-rank structure is not unique. Whereas the first decomposition shows Alice is strongest
in quantitative intelligence, the second indicates Bob as having the strongest quantitative intelligence,
not Alice. To circumvent this ambiguity, one may add a third dimension to the data. This could be
the time of day (i.e. Day or Night) represented by a binary variable zzz. For example, the scores in
Table 1.1 are those during the day, and the nightly scores are given in Table 1.2

Classics Math Music ...
Alice 23 46 25 ...
Bob 11 32 15 ...

Charlie 9 22 11 ...
...

...
...

...

Table 1.2: Spearman’s Hypothesis Night Scores

Now, the data in Table 1.1 and Table 1.2may be represented as tensor with the following form

TTT = xxxq ⊗ yyyq ⊗ zzzq + xxxv ⊗ yyyv ⊗ zzzv (1.5)

The main motivation for the use of tensor methods is that under certain conditions, tensors have a
unique low-rank decomposition, even though the corresponding matrix model does not. Now, the
decomposition is

[
xxxq xxxv

]
=


4 3
3 1
2 1
...

...


and

[
yyyq yyyv

]
=


1 5
5 2
2 3
...

...


and [

zzzq zzzv
]

=

1 3
2 1
...

...


It can be observed that the second matrix decomposition that indicated Bob with the highest
quantitative intelligence is no longer valid. There are no values of zq and zv at night that could
generate the matrix Table 1.2.
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1.2.2 Transition Matrix of a Hidden Markov Model

Figure 1.2: Hidden Markov Model with observation sequence xxx and hidden sequence hhh.

Consider a time series model in which the observations (such as a sequence of words) is generated
by an underlying Markov process (such as the subject topic). The natural idea is to compute
correlations to detect patterns. For instance, if (i, j, k) represent a sequence of words, we count the
number of times that these are the first three words of a sentence. Enumerating over i, j, and k
gives us a three dimensional array (a tensor) TTT = Tijk. We can further normalize it by the total
number of sentences. After normalization the (i, j, k)-th entry of the tensor will be an estimation of
the probability that the first three words are (i, j, k). For simplicity assume we have enough samples
and the estimation is accurate. Then

Tijk = P (x1 = i, x2 = j, x3 = k) (1.6)

Now, if we condition on h2 we obtain

Tijk =

n∑
l=1

P (h2 = l)P (x1 = i|h2 = l)P (h2 = l)P (x2 = j|h2 = l)P (h2 = l)P (x3 = j|h2 = l) (1.7)

By letting xxxl be a vector whose i-th entry is the probability of the first word is i, given the topic of
the second word is l, and similarly yyyl and zzzl, we have

Tijk =

n∑
l=1

P (h2 = l)xxxl ⊗ yyyl ⊗ zzzl (1.8)

which it the tensor form that we require to learn the parameters from.
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1.3 Parameter learning in Gaussian Mixtures

1.3.1 Problem Setup

Formally, the learning problem is given the data xxx ⊂ Rd is drawn from a mixture of k Gaussians
with d ≥ k. So

xxx ∼
k∑

i=1

wiN (µµµi, σ
2
i III) (1.9)

The goal is learn the parameters wi, µµµi, and σ2i . The setting above corresponds to the mixture of
spherical Gaussians studied in Ref. [AGH+14] with differing covariances. The non-degeneracy condi-
tion is that the vectors µµµ1,µµµ2, ...,µµµk ∈ Rd are linearly independent, and the scalars w1, w2, ..., wk > 0
are strictly positive [AGH+14]. The moments are given as

E[xxx] =

k∑
i=1

wiµµµi (1.10)

E[xxx⊗ xxx] =

k∑
i=1

wiµµµi ⊗µµµi + σ̄2III (1.11)

E[xxx⊗ xxx⊗ xxx] =
k∑

i=1

wiµµµi ⊗µµµi ⊗µµµi +
k∑

i=1

mmm1 ⊗ eeei ⊗ eeei + eeei ⊗mmm1 ⊗ eeei + eeei ⊗ eeei ⊗mmm1 (1.12)

where
mmm1 = E[xxx(vvvT (xxx− E[xxx])2] (1.13)

and let vvv be any unit-norm eigenvector corresponding to σ̄2. The mean covariance is

σ̄2 =
k∑

i=1

wiσ
2
i (1.14)

and it is the smallest eigenvalue of the covariance matrix E[(xxx−E[xxx])(xxx−E[xxx])T ]. Now, we have

mmm1 =
k∑

i=1

wiσ
2
i (1.15)

MMM2 =

k∑
i=1

wiµµµi ⊗µµµi (1.16)

MMM3 =
k∑

i=1

wiµµµi ⊗µµµi ⊗µµµi (1.17)
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1.3.2 Parameter Estimation via Jenrich’s Algorithm

The idea is to now use MMM2 andMMM3, which are estimated from data, to estimate wi and µµµi. The
process requires using MMM2 andMMM3. In particular, how may we recover wi and µµµi fromMMM3 and
under what conditions. Revisiting Eq. 1.17, for any vector vvv ∈ Rd, we have

MMM3(vvv,III, III) =

k∑
i=1

wi(vvv
Tµµµi)⊗µµµi ⊗µµµi (1.18)

Let Eq. 1.18 have a diagonal representation UUUΛΛΛUUUT . If the µµµi’s are linearly independent (sufficient
for Jenrich’s inequality), and are orthonormal, then we can recover them as eigenvectors, and wi’s
as solutions to the linear equation λi = wi(vvv

Tµµµi). Jenrich’s algorithm proceeds as follows:

1. Let TTT =
∑k

i=1 vvvi ⊗ vvvi ⊗ vvvi with vvvi being linearly independent. This implies k ≤ d.

2. For xxx ∈ Rd, we have TTT x = TTT .xxx = UUUDDDxUUU
T , UUU = [vvv1, ..., vvvk] ∈ Rd×k. DDDx is the diagonal matrix

with entries vvvTi xxx

3. Draw two vectors xxx and yyy at random in Rd. Then TTT x(TTT y)+ = UUUDDDx(DDDy)−1UUU+. Drawing xxx
and yyy at random ensures that DDDy is invertible and diagonal entries of DDDx(DDDy)−1 are distinct.

4. Since UUU has rank k, we have UUU+UUU = III. So, the vvvi’s can be recovered as eigenvectors of
TTT x(TTT y)+

In the algorithm, + denotes pseudo-inverse of a matrix. The algorithm looks at weighted slices
of the tensor TTT : a weighted slice is a matrix that is the projection of the tensor along the xxx or
yyy directions (similarly if we take a slice of a matrix MMM , it will be a vector that is equal to MMM.xxx
). Because of the low rank structure, all the slices must share matrix decompositions with the
same components. The main observation of the algorithm is that although a single matrix can have
infinitely many low rank decompositions, two matrices can only have a unique decomposition if we
require them to have the same components. In fact, it is highly unlikely for two arbitrary matrices
to share decompositions with the same components. In the tensor case, because of the low rank
structure we have

TTT x = UUUDDDxUUU
T ,TTT y = UUUDDDyUUU

T (1.19)

Therefore,
TTT x(TTT y)+ = UUUDDDx(DDDy)−1UUU+ (1.20)

where DDDx ,DDDy are diagonal matrices. This is called a simultaneous diagonalization for TTT x and TTT y.
With this structure it is easy to show that vvvi’s are eigenvectors of TTT x(TTT y)+ = UUUDDDx(DDDy)−1UUU+. So
we can actually compute tensor decompositions using spectral decompositions for matrices.

1.3.3 Parameter Estimation via Simultaneous Orthogonal Tensor Diagonliza-
tion

Alternatively, a more robust method first uses MMM2 in Eq. 1.16 to whitenMMM3 in Eq. 1.17. This
method essentially, reduces the problem of solving[

MMM2 =
∑k

i=1wiµµµi ⊗µµµi
MMM3 =

∑k
i=1wiµµµi ⊗µµµi ⊗µµµi

]
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into finding an orthogonal decomposition for the tensor TTT , i.e. we find WWW ∈ Rk×d which is a linear
transformation such that

MMM2(WWW,WWW ) = WWW TMMM2WWW = III (1.21)

where III is the k × k identity matrix. Hence, WWW whitens MMM2. Since, MMM2 = UUUDDDUUUT , we can have
WWW := UUUDDD−1/2, where UUU ∈ Rd×k is the matrix of orthonormal eigenvectors of MMM2, and DDD ∈ Rk×k is
the diagonal matrix of positive eigenvalues of MMM2. Additionally, we define

µ̃µµi :=
√
wiWWW

Tµµµi (1.22)

Such that,

MMM2(WWW,WWW ) =
k∑

i=1

WWW T (
√
wiWWW

Tµµµi)(
√
wiWWW

Tµµµi)
TWWW =

k∑
i=1

µ̃µµiµ̃µµi = I (1.23)

so µ̃µµi ∈ Rk are orthonormal vectors.

Now, we define TTT :=MMM3(WWW,WWW,WWW ) ∈ Rk×k×k, so that

TTT =
k∑

i=1

1
√
wi
µ̃µµi ⊗ µ̃µµi ⊗ µ̃µµi =

k∑
i=1

w̃iµ̃µµi ⊗ µ̃µµi ⊗ µ̃µµi (1.24)

Since, UUUUUUTµµµi = µµµi ∀i, WWW+µ̃µµi =
√
wiµµµi. Hence, wi’s and µµµi’s can be recovered as eigenvalue/eigen-

vectors for any vector vvv. Proceeding with the decomposition, we want to find the orthogonal
decomposition to Eq. 1.24. For any vector vvv, we have

TTT .vvv =
k∑

i=1

w̃i(vvv
T µ̃µµi)µ̃µµi ⊗ µ̃µµi = UUUΛΛΛUUUT (1.25)

with UUU = [µ̃µµ1, ..., µ̃µµk] and the diagonals of the matrix ΛΛΛjj = w̃i(vvv
T µ̃µµi). The improve the robustness

of the algorithm by reducing its sensitivity to noise, performing simultaneous diagonalization of
several random projections is proposed [KCL15]. The final parameters are obtained by reverting
the transformations for µ̃µµi and w̃i.

1.4 Conclusion

This lecture focuses on tensor methods to estimate the parameters of mixture models. We demon-
strated how this estimation is obtained via an orthogonal decomposition which is analogous to
matrix decomposition. These algorithms usually only work when the dimension of each µµµi is greater
than the number of Gaussians - commonly referred to as the ’blessing’ of dimensionality. The
procedure is illustrated for the case of a mixture of Gaussians but can be used for other single-topic
models and multiview models.

Additionally, there exist more robust algorithms that can compute these decompositions in polyno-
mial time such as in Refs. [BCMV14], [GHK15], [GM15].
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